Hausdorff dimension and oracle constructions

نویسنده

  • John M. Hitchcock
چکیده

Bennett and Gill (1981) proved that P 6= NP relative to a random oracle A, or in other words, that the set O[P=NP] = {A | P = NP} has Lebesgue measure 0. In contrast, we show that O[P=NP] has Hausdorff dimension 1. This follows from a much more general theorem: if there is a relativizable and paddable oracle construction for a complexity-theoretic statement Φ, then the set of oracles relative to which Φ holds has Hausdorff dimension 1. We give several other applications including proofs that the polynomial-time hierarchy is infinite relative to a Hausdorff dimension 1 set of oracles and that P 6= NP ∩ coNP relative to a Hausdorff dimension 1 set of oracles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hausdorff dimension of some snowflake-like recursive constructions

Fractal subsets of Rn with highly regular structure are often constructed as a limit of a recursive procedure based on contractive maps. The Hausdorff dimension of recursively constructed fractals is relatively easy to find when the contractive maps associated with each recursive step satisfy the Open Set Condition (OSC). We present a class of random recursive constructions which resemble snowf...

متن کامل

On Hausdorff Dimension of Random Fractals

We study random recursive constructions with finite “memory” in complete metric spaces and the Hausdorff dimension of the generated random fractals. With each such construction and any positive number β we associate a linear operator V (β) in a finite dimensional space. We prove that under some conditions on the random construction the Hausdorff dimension of the fractal coincides with the value...

متن کامل

Constructions of thin-tall Boolean spaces

This is an expository paper about constructions of locally compact, Hausdorff, scattered spaces whose Cantor-Bendixson height has cardinality greater than their Cantor-Bendixson width. 2000 Mathematics Subject Classification: 54A25, 54A35, 54G12,03E05, 06E15.

متن کامل

Effective Bi-immunity and Randomness

We study the relationship between randomness and effective biimmunity. Greenberg and Miller have shown that for any oracle X, there are arbitrarily slow-growing DNR functions relative to X that compute no MartinLöf random set. We show that the same holds when Martin-Löf randomness is replaced with effective bi-immunity. It follows that there are sequences of effective Hausdorff dimension 1 that...

متن کامل

Historic set carries full hausdorff dimension

‎We prove that the historic set for ratio‎ ‎of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional‎ ‎non-uniformly hyperbolic dynamical systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 355  شماره 

صفحات  -

تاریخ انتشار 2004